Abstract

In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on coherence resonance (CR) induced by channel noise in adaptive Newman–Watts stochastic Hodgkin–Huxley neuron networks. It is found that STDP can either enhance or suppress the intrinsic CR when the adjusting rate of STDP decreases or increases. STDP can alter the effects of network randomness and network size on the intrinsic CR. Under STDP, for electrical coupling there are optimal network randomness and network size by which the intrinsic CR becomes strongest, however, for chemical coupling the intrinsic CR is always enhanced as network randomness or network size increases, which are different from the results for fixed coupling. These results show that the intrinsic CR of the neuronal networks can be either enhanced or suppressed by STDP, and there are optimal network randomness and network size by which the intrinsic CR becomes strongest. These findings could provide a new insight into the role of STDP for the information processing and transmission in neural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.