Abstract

The influence of preliminary heat treatment, involving quenching and further aging at 190°C for 10 h, on the grain structure, hardness, and tensile strength of hot-pressed commercial D16 alloy severely deformed via room-temperature high pressure torsion (HPT) (10 revolutions under P = 6 GPa) was investigated. In spite of higher deformation strengthening, owing to the formation of a more developed nanostructure in the prequenched material, the alloy hardness and strength in both HPT conditions (i.e. after quenching and further aging) were quite similar. The nature of the alloy structure-property relations found is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call