Abstract

The brain, using expectations, linguistic knowledge, and context, can perceptually restore inaudible portions of speech. Such top-down repair is thought to enhance speech intelligibility in noisy environments. Hearing-impaired listeners with cochlear implants commonly complain about not understanding speech in noise. We hypothesized that the degradations in the bottom-up speech signals due to the implant signal processing may have a negative effect on the top-down repair mechanisms, which could partially be responsible for this complaint. To test the hypothesis, phonemic restoration of interrupted sentences was measured with young normal-hearing listeners using a noise-band vocoder simulation of implant processing. Decreasing the spectral resolution (by reducing the number of vocoder processing channels from 32 to 4) systematically degraded the speech stimuli. Supporting the hypothesis, the size of the restoration benefit varied as a function of spectral resolution. A significant benefit was observed only at the highest spectral resolution of 32 channels. With eight channels, which resembles the resolution available to most implant users, there was no significant restoration effect. Combined electric–acoustic hearing has been previously shown to provide better intelligibility of speech in adverse listening environments. In a second configuration, combined electric–acoustic hearing was simulated by adding low-pass-filtered acoustic speech to the vocoder processing. There was a slight improvement in phonemic restoration compared to the first configuration; the restoration benefit was observed at spectral resolutions of both 16 and 32 channels. However, the restoration was not observed at lower spectral resolutions (four or eight channels). Overall, the findings imply that the degradations in the bottom-up signals alone (such as occurs in cochlear implants) may reduce the top-down restoration of speech.

Highlights

  • IntroductionWhen portions of speech are masked by background sounds and not available to the auditory system, the brain may restore the missing segments using linguistic knowledge; syntactic, semantic, and lexical constraints; expectations; and context

  • Speech is commonly masked by background sounds in everyday listening environments

  • The main focus of the present study was on the bottom-up cues that could be degraded due to hearing impairment and/or front-end processing of hearing devices, and the effects of these degradations on the top-down speech repair mechanisms, quantified using the phonemic restoration (PR) paradigm

Read more

Summary

Introduction

When portions of speech are masked by background sounds and not available to the auditory system, the brain may restore the missing segments using linguistic knowledge; syntactic, semantic, and lexical constraints; expectations; and context One paradigm that is commonly used to quantify the effect of such top-down filling is phonemic restoration (PR), where better intelligibility of interrupted speech with periodic silent intervals is observed after these silent intervals are filled with loud noise bursts (Warren 1970; Warren and Obusek 1971; Warren and Sherman 1974; Bashford and Warren 1979; Verschuure and Brocaar 1983; Bregman 1990; Bashford et al 1992; Kashino 2006). PR seems to be a result of a complex interplay between bottom-up signal cues and top-down cognitive mechanisms

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call