Abstract

The effect of spectral line shape on apparent rotational temperatures of OH has been investigated for the P1 branch, 2Σ→2Π transitions, (0, 0) band, by treating the ratio of collision half-width to Doppler half-width as a variable parameter. The results of calculations for emission experiments, using conventional plots, show a large effect of line shape on apparent temperature. In general, the greater the ratio of collision half-width to Doppler half-width, the smaller the distortion of experimental data. The analysis predicts higher apparent rotational temperatures for isothermal systems at reduced pressures than at atmospheric pressures. Although this result is in agreement with experimental observations on flames, it cannot be used as an explanation for the observed data without auxiliary studies proving that distortion of data is of importance in any given case. The two-path method for determining temperatures and emissivities (concentrations) in flames has been extended to spectral lines with combined Doppler- and collision-broadening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.