Abstract

This paper describes the effect of specimen size on slow crack growth and fracture toughness of the titanium alloy Ti-6A1-4V. The load versus crack opening displacement curve rises steeply after reaching the end of the linear part. Stable crack extension starts within the linear part of the P-v-curve. The crack growth resistance curve is independent of thickness B until KQ in the range 2 < B < 20 mm, leading to the conclusion that slow crack growth can occur in plane strain.The secant method, leading to KQ at 2 percent crack extension, yields a specimen geometry dependent fracture toughness. KQ increases with width, W and is only slightly dependent on thickness, B.The consequences of this behavior for fracture toughness determination in connection with the ASTM recommendation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.