Abstract
Within the field of forensic voice comparison (FVC), there is growing pressure for experts to demonstrate the validity and reliability of the conclusions they reach in casework. One benefit of a fully data-driven approach that utilises databases of speakers to compute numerical likelihood ratios (LRs) is that it is possible to estimate validity and reliability empirically. However, little is known about the stability of LR output as a function of the specific speakers sampled for use in the training, test and reference data sets. The present study addresses this issue using two large sets of formant data: Cantonese sentence final particle /a/ and British English filled pauses UM. Experiments were replicated 100 times varying the 1) training, test and reference speakers, 2) training speakers only, 3) test speakers only, and 4) reference speakers only. The results show that varying the speakers in all three sets has the greatest effect on system stability for both the Cantonese and English variables, with the Cllr varying from 0.60 to 0.97 for /a/ and 0.32 to 1.33 for UM. However, this variability is primarily due to the effects of uncertainty in the test set. Varying only the training speakers has the least effect on system stability for /a/ (Cllr range: 0.76 to 0.88), while varying reference speakers has the smallest effect for UM (Cllr range: 0.40 to 0.54). The results indicate that in LR-based FVC it is important to assess the stability of the system as a function of the samples of speakers used (Cllr range) rather than just reporting a single Cllr value based on one configuration of speakers in each set. The study contributes to the general debate on reporting uncertainty in LR computation.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Speech Language and the Law
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.