Abstract

To find variations in the dynamics of the surface M2 tide in the White Sea induced by the spatially inhomogeneity of the resistance coefficient, we use a modified version of the QUODDY-4 three-dimensional finite-element hydrostatic model. This version differs from the original version in that it has a module introduced to calculate the resistance coefficient in the bottom boundary layer (BBL). The resistance coefficient is found from resistance laws for an oscillating rotating turbulent BBL over hydrodynamically rough and partially rough (smoothly rough) underlying surfaces describing the dependence of the resistance coefficient and other integral characteristics of resistance on dimensionless similarity parameters: the sea-bottom Rossby number Ro, the streaming Reynolds number Re, and the relative (normalized to tidal frequency) inertial frequency f/σ. The use of spatial inhomogeneity of the resistance coefficient was shown not to lead to considerable changes in tidal characteristics. The values of these characteristics are several times larger than the instrumental measurement errors for the level and velocity but less than the errors in their calculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call