Abstract

Some quantities in reaction-diffusion models from cellular biology or ecology depend on the spatial average of density functions instead of local density functions. We show that such nonlocal spatial average can induce instability of constant steady state, which is different from classical Turing instability. For a general scalar equation with spatial average, the occurrence of the steady state bifurcation is rigorously proved, and the formula to determine the bifurcation direction and the stability of the bifurcating steady state is given. For the two-species model, spatially non-homogeneous time-periodic orbits could arise due to spatially non-homogeneous Hopf bifurcation from the constant equilibrium. Examples from a nonlocal cooperative Lotka-Volterra model and a nonlocal Rosenzweig-MacArthur predator-prey model are used to demonstrate the bifurcation of spatially non-homogeneous patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.