Abstract
Biological responses on biomaterials occur either on their surface or at the interface. Therefore, surface characterization is an essential step in the fabrication of ideal biomaterials for achieving effective control of the interaction between the material surface and the biological environment. Herein, we applied femtosecond laser ablation on electrospun fibrous scaffolds to fabricate various hierarchical patterns with a focus on the alignment of cells. We investigated the simultaneously stimulated response of cardiomyoblasts based on multiple topographical cues, including scales, oriented directions, and spatial arrangements, in the fibrous scaffolds. Our results demonstrated a synergistic effect on cell behaviors of one or more structural arrangements in a homogeneous orientation, whereas antagonistic effects were observed for cells arranged on a surface with heterogeneous directions. Taken together, these results indicate that our hierarchically patterned fibrous scaffolds may be useful tools for understanding the cellular behavior on fibrous scaffolds used to mimic an extracellular matrix-like environment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1732-1742, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.