Abstract

The invasion of Spartina alterniflora poses a great threat to coastal wetland ecosystems. In this study, the stoichiometric characteristics of soil carbon, nitrogen, and phosphorus under a Spartina alterniflora invasion were explored using ANOVA in a coastal wetland in Hangzhou Bay, and the driving coupling relationship between soil environmental factors and soil C:N:P stoichiometric characteristics of the coastal wetland were further explored based on the redundancy analysis (RDA), boosted regression tree (BRT), and partial least squares-structural equation (PLS-SEM) model. The results showed that:① after the invasion of Spartina alterniflora, soil N:P and total nitrogen (TN) in the wetland increased significantly, and with the increase in invasion time, TN and N:P decreased significantly, whereas soil organic carbon (SOC), C:N, and C:P increased significantly. ② The RDA model revealed that the main factors affecting the stoichiometric characteristics of topsoil C:N:P were SOC>electrical conductivity (EC)>TN in winter and SOC>bulk density (BD)>TN in summer. ③ The BRT model showed that under the invasion of Spartina alterniflora, TN was the key factor affecting soil C:N and N:P, and SOC was the key factor affecting C:P. ④ The PLS-SEM model showed that clay and water content directly affected SOC, thus affecting C:N and C:P; the clay and EC directly affected total phosphorus (TP), thus affecting N:P and C:P; and the EC directly affected TN, thus affecting C:N and N:P. In conclusion, the invasion of Spartina alterniflora had a significant impact on soil C:N:P stoichiometric characteristics in the study area. Soil physical properties and nutrient content directly or indirectly affected soil C:N:P stoichiometric characteristics to varying degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.