Abstract
This paper considers the effect of sparse array geometry on the co-array signal subspace estimation error for Direction-of-Arrival (DOA) estimation. The second largest singular value of the signal covariance matrix plays an important role in controlling the distance between the true subspace and its estimate. For a special case of two closely-spaced sources impinging on the array, we explicitly compute the second largest singular value of the signal covariance matrix and show that it can be significantly larger for a nested array when compared against a uniform linear array with same number of sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.