Abstract

Dithienosilole-benzothiadiazole based low bandgap copolymers remain promising material for organic photovoltaics. A new copolymer, poly[(4,4′-dioctyldithieno[3,2-b:2′,3′-d]silole-2,6-diyl)-alt-{4,7-bis[2-(3-hexyl)thienyl]-2,1,3-benzothiadiazole-5,5′-diyl}] (PDTSDTBT) was designed by introducing a thiophene spacer bearing a hexyl chain at β-position in the main backbone and compared to its analog poly[(4,4′-dioctyldithieno[3,2-b:2′,3′-d]silole-2,6-diyl)-alt-(2,1,3-benzothiadiazole-4,7-diyl)] (PDTSBT). In PDTSDTBT, linear alkyl chains on silicon were chosen due to facile and cheap access and the inserted 3-hexylthiophene units were chosen to increase solubility and molar mass, a weak point with PDTSBT. The two parameters are important to optimize photovoltaic performances. To compare characteristics, PDTSDTBT of molar masses greater than, and equal to a sample of PDTSBT, were prepared. Pd-catalyzed Stille cross-coupling reactions in a micro-wave reactor to promote an efficient copolymerisations. A strong absorption ranging from 370nm to 800nm and a good thermal stability were observed. PDTSDTBT showed better solubility and higher degree of crystallinity. Facile synthesis of high molar masses meant that higher efficiencies, around 40% greater, could be obtained with PDTSDTBT. The polymer was demonstrated to be susceptible to improvement through the use of device-additives. For example, under initial optimisations using PDTSDTBT:PC60BM blend at a ratio of 1:1 delivered a power conversion efficiency of 2.13% with JSC=7.73 (mA/cm2), under AM 1.5 (100mW/cm2) illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.