Abstract
Effect of spatially variable magnetic field on ferrofluid flow and heat transfer is investigated. The enclosure is filled with Fe3O4–water nanofluid. Control volume based finite element method (CVFEM) is applied to solve the governing equations. The combined effects of ferrohydrodynamic and magnetohydrodynamic have been taken into account. The influences of Magnetic number, Hartmann number, Rayleigh number and nanoparticle volume fraction on the flow and heat transfer characteristics have been examined. Results show that enhancement in heat transfer decrease with increase of Rayleigh number while for two other active parameters different behavior is observed. Also it can be concluded that Nusselt number is an increasing function of Magnetic number, Rayleigh number and nanoparticle volume fraction while it is a decreasing function of Hartmann number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.