Abstract

Sox18 is a developmental gene that encodes transcription factors. It has been indicated as be a key gene affecting the growth and development of hair follicles, in which dermal papilla cells (DPCs) have been demonstrated to play an important role through their ability to induce the formation of hair follicles. Pre-laboratory studies have found that Sox18 is differentially expressed in the dermal papilla cells of different pattern types of Hu sheep. We speculated that Sox18 plays an important role in the dermal papilla cells of Hu sheep. In our study, we analyzed the effect of Sox18 on the induction ability of DPCs in order to elucidate the function and molecular mechanism of Sox18 in the DPCs of Hu sheep. We first identified the expression of Sox18 in the DPCs of Hu sheep by immunofluorescence staining. We then used alkaline phosphatase staining, cell morphology observations and RT-PCR to detect the effect of Sox18 on the induction of DPCs after overexpression of or interference with Sox18. We also used RT-PCR, WB and immunofluorescence staining to detect the effect of Sox18 on the Wnt/β-catenin signal pathway in DPCs. We found that Sox18 was specifically expressed in the DPCs of Hu sheep, and that Sox18 could enhance the alkaline phosphatase activity in the DPCs of Hu sheep and accelerate cell agglutination. The results of RT-PCR revealed that Sox18 promoted the mRNA expression of Versican, HHIP and FGFRI, and inhibited the mRNA expression of BMP4 and WIF1. Further studies showed that Sox18 promoted the expression of β-catenin and activated the Wnt/β-catenin signal pathway in DPCs. When the Wnt/β-catenin signal pathway of DPCs was activated, the induction ability of DPCs was enhanced. Overall, we believe that Sox18 could enhance the induction ability of DPCs in Hu sheep and regulate the induction ability of DPCs through the Wnt/β-catenin signal pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.