Abstract

A self-consistent perturbation approach is presented for analyzing the effect of the airborne source's height on the air-to-water sound transmission in shallow water with a randomly rough sea surface. It is shown in early researches that, in shallow water with a smooth sea surface, the airborne source's height mostly affects the phase of the sound field and barely influences the amplitude. However, in shallow water with a rough sea surface, few researches about such a problem have been published. In this work, the sound fields in shallow water with a randomly rough sea surface induced by an airborne source at different heights are calculated by a self-consistent perturbation approach. The numerical simulation results show that the fluctuation of the scattered field decreases as the source's height increases, in contrast, the averaged energy of the total field is hardly influenced by the source's height in the statistical sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call