Abstract

AbstractThe behaviour of several kinds of group B particles ranging from 100 μm to 600 μm was studied in a sound wave vibrated fluidized bed (SVFB). The fluidized bed consists of a transparent Plexiglas tube that is 54 mm i.d. × 1 m high. A speaker mounted at the top of the bed was supplied by a function generator with square waves and was used to generate the sound as the source of vibration of the fluidized bed. The influence of the particle size, density of particles and sphericity of particles on the minimum fluidization velocity, pressure fluctuations and bubble rise velocity in the SVFB was investigated. The minimum fluidization velocity decreased as the sound energy increased. When the sound energy was strong enough and greater than the critical power, the minimum fluidization velocity would approach the same value regardless of the degree of resonance (DOR) value if the particles were in spherical shape. For non‐spherical shape particles the minimum fluidization velocity was the function of the DOR value if the power was greater than the critical power. For the middle particle size range, the standard deviation of pressure fluctuations in an SVFB became lower than the one without the effect of sound in high superficial gas velocity range, but the result was reverse for the low superficial velocity; for the large particle size range, the standard deviation of pressure fluctuations in an SVFB was larger than the one without the effect of sound. The sound could also reduce the bubble rise velocity in an SVFB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call