Abstract

1. The effect of the NSAIDs indomethacin, indoprofen, diclofenac and acetylsalicylic acid on the increase in guanosine 3':5'-cyclic monophosphate (cyclic GMP) induced by nitric oxide-donor agents was tested in human whole platelets and in platelet crude homogenate. 2. In whole platelets, indomethacin reduced the increase in cyclic GMP induced by the nitric oxide-donors (NO-donors) sodium nitroprusside (NaNP) and S-nitroso-N-acetylpenicillamine (SNAP) in a dose-dependent way, its IC50 being 13.7 microM and 15.8 microM, respectively. 3. Of the other cyclooxygenase inhibitors tested, only indoprofen reduced the increase in cyclic GMP induced by both NO-donors in a dose-dependent way (IC50=32.7 microM, NaNP and 25.0 microM, SNAP), while acetylsalicylic acid (up to 1000 microM) and diclofenac (up to 100 microM) were ineffective. 4. However, in platelet crude homogenate neither indomethacin nor indoprofen reduced the cyclic GMP production. 5. Indomethacin (10 microM), indoprofen (30 microM), diclofenac (100 microM) and acetylsalicylic acid (1000 microM) showed a comparable efficacy in inhibiting platelet thromboxane B2 (TXB2) production, suggesting that the inhibitory effect of indomethacin and indoprofen on the increase in cyclic GMP induced by both NO-donors was not mediated by inhibition of cyclooxygenase. 6. In vitro, the NSAIDs analysed did not interfere with nitrite production of SNAP. 7. The unhomogeneous behaviour of NSAIDs on the increase in cyclic GMP induced by NO-donors in whole platelets may contribute to the different pharmacological and toxicological characteristics of the drugs, providing new knowledge on the effect of indomethacin and indoprofen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.