Abstract

This study was designed in an attempt to elucidate a mechanism of somatostatin inhibition of glucose-induced Ca+ uptake by rat pancreatic islets. Rat pancreatic islets were perifused with Krebs-Ringer bicarbonate (KRB) buffer containing 16.7 mM of glucose with somatostatin (2 micrograms/ml) or/and diltiazem HCl (2 x 10(-5) M). Somatostatin inhibited preferentially the early phase of glucose-induced insulin release, whereas diltiazem HCl inhibited the late one. And the concomitant presence of the submaximal concentration of somatostatin (2 micrograms/ml) and diltiazem HCl (2 x 10(-5 M) provided the completely additive inhibition of glucose-induced insulin release. Rat pancreatic islets were incubated with KRB buffer supplemented with 16.7 mM of glucose and 45CaCl2 (10 muCi/ml) for 5--60 min and the biphasic 45Ca uptake by pancreatic islets was obtained. Somatostatin (500 ng/ml-4 micrograms/ml) gave the suppressive effect on the early phase of glucose-induced 45Ca uptake, but the higher concentration (2 micrograms/ml) of somatostatin did not impair the late phase of 45Ca uptake by pancreatic islets. On the other hand, diltiazem HCl did suppress the late phase of glucose-induced 45Ca uptake dose-dependently, but did not suppress the early phase (2 x 10(-5) M). These data indicate that somatostatin suppresses the early phase of glucose-induced Ca2+ uptake preferentially to the late one and has a different action mechanism from Ca antagonist on glucose-induced insulin release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.