Abstract

The series of CH...O bonds formed between CF(n)H(4-n) (n = 0-3) and water are studied by quantum calculations under vacuum and in various solvents, including aqueous environment. The results are compared with the OH...O bond of the water dimer in the same solvents. Increasing polarity of the solvent leads in all cases to a lessening of the H-bond interaction energy, in a uniform fashion such that the CH...O bonds all remain weaker than OH...O in any solvent. These H-bond weakenings are coupled to a shortening of the inter-subunit separation. The contraction of the covalent CH bond to the bridging proton is reduced as the solvent becomes more polar, and the blue shift of its stretching vibration is likewise diminished. A process is considered that simulates protein folding by starting from a pair of noninteracting subunits in aqueous solvent and then goes to a H-bonded pair within the confines of a protein environment. This process is found to be energetically more favorable for some of the CH...O H-bonds than for the nominally stronger conventional OH...O H-bond. This finding suggests that CH...O bonds can make important energetic contributions to protein folding, on par with those made by traditional H-bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.