Abstract

Dissipative particle dynamics (DPD), a new simulation technique appropriate at mesoscopic length scales, has been applied to a dilute solution of polymer in solvents of varying quality. Unlike earlier simulations, the solvent is represented in the form mobile particulate packets, so that potential interferences of solvent flow about neighboring beads of the polymer are explicitly included. We establish that the mechanism used to vary the solvent quality produces a collapse transition, as judged both by static conformational and by dynamical criteria. The scaling of the polymer radius of gyration and of its longest dynamical relaxation time are in good agreement with accepted theory. The condition for transition from good to poor solvent is consistently predicted by several static and dynamical measures. Though the model that underlies DPD is not atomically detailed, the results presented strongly suggest that both excluded volume and hydrodynamic interaction must present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.