Abstract
We use concentrated solution theory to derive an equation governing solvent velocity in a binary electrolyte when a current passes through it. This equation, in combination with the material balance equation, enables the prediction of electrolyte concentration profiles and species velocities as a function of space and time. This framework is used to predict ion velocities in Li-Li symmetric cells containing a mixture of lithium bis(trifluoromethanesulfonyl)imide and poly(ethylene oxide) (LiTFSI/PEO), for which the cation transference number relative to the solvent velocity, t + 0 , can be either positive or negative, depending on salt concentration. Accounting for the solvent motion is increasingly important at higher concentrations. Especially for negative t + 0 , if solvent velocity is set to zero, the cation velocity, based on the electrode-electrolyte interface reference frame, is pointed opposite to the current flow. However, when solvent motion is taken into account, the cation velocity, based on the same reference frame, is in the same direction as the current. This analysis demonstrates the importance of accounting for solvent velocity rigorously in seemingly simple systems such as symmetric cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.