Abstract

Fe-high Mn-Si alloys, which undergo {gamma} (fcc) to {var_epsilon} (hcp) martensitic transformation, exhibit a pronounced shape memory effect. The origin of shape memory effect of these alloys is the reversion of stress-induced {var_epsilon} martensite. A shape change must hence be accomplish3ed by stress-induced martensitic transformation without permanent slip in austenite ({gamma}) in order to obtain a good shape memory effect. It is clear that the intrusion of permanent slip can be suppressed by increasing the strength of austenite and by decreasing the applied stress required for a shape change due to stress-induced martensitic transformation. It has been reported that the addition of the interstitial elements of C and N as well as the substitutional elements of Mo and V increases the 0.2% proof stress of austenite in Fe-high Mn alloys. However, there have been few studies on the effect of these alloying elements on the shape memory effect of Fe-high Mn based alloys. In the present study, it was aimed to improve the shape memory effect of Fe-high Mn based alloys by the strengthening of austenite through solution hardening due to C and Mo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.