Abstract

In this paper, we study the effect of solutal Marangoni convection (SMC) on the microstructure evolution in a monotectic system, using the convective Cahn-Hilliard and Navier-Stokes equations with a capillary tensor contributed by the chemical concentration gradient. At first, we simulate the spontaneous motion of two distant droplets induced by SMC and compare our results with an analytical solution. We then compute the coalescence of two droplets in contact and coarsening of two distant droplets considering different sizes. We further study the influence of SMC on the evolution of phase separation processes inside the spinodal region for Fe-50 at %Sn and Fe-40 at %Sn alloys. In the former case, we rationalize our results using Fourier spectra and in the latter case, we compare the size distribution of droplets with the LSW theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.