Abstract
We develop a robust approach for the description of the energetics of charge-transfer (CT) excitations and transport levels at organic interfaces based on a screened range-separated hybrid (SRSH) functional. We find that SRSH functionals correctly capture the effect of solid-state electronic polarization on transport gap renormalization and on screening of the electrostatic electron-hole interaction. With respect to calculations based on nonscreened optimally tuned RSH (long-range corrected) functionals, the SRSH-based calculations can be performed for both isolated molecular complexes and systems embedded in a dielectric medium with the same range-separation parameter, which allows a clear physical interpretation of the results in terms of solid-state polarization without any perturbation of the molecular electronic structure. By considering weakly interacting donor/acceptor complexes of pentacene with C60 and poly-3-hexylthiophene (P3HT) with PCBM, we show that this new approach provides CT-state energies that compare very well with experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.