Abstract

AbstractObservations of a U.K. suspension bridge show that thermal expansion and contraction cycles do not follow simple linear relationships with a single temperature value and that time lag and temperature distribution can be significant factors. This investigation explores these effects by simulating the transient thermal and quasistatic response of the Tamar Bridge with separate finite-element models of the bridge and suspension cables. Thermal loads are determined by calculated solar radiation intensities and temperature data from the bridge monitoring system. Because cloud cover plays an important role in the levels of solar radiation, cloud coverage was estimated indirectly using monitored temperature differences between the top and bottom of the suspended structure. The results demonstrate that peak temperatures of the suspended structure and cables occur at different times. The lag is caused by differing material properties and the surfaces’ ability to absorb and lose heat. Transient phenomena ma...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call