Abstract

Abstract The shear wave velocity profile and dynamic soil properties are known to be affected by aleatory uncertainty. This paper aims to investigate the effect of a statistical variation in the initial stiffness profile, stiffness degradation and damping curves on ground response predictions by conducting stochastic analysis. The Large Scale Seismic Test site in Lotung, Taiwan, is back-analysed with a fully-coupled finite element procedure using an advanced kinematic hardening soil model. Two ground motions recorded at the site, one strong and one weak, are applied at bedrock level. The results reveal that the site response prediction is sensitive to the seismic intensity of the input motion. When the level of induced shear strain is higher, i.e. in the case of the stronger motion, the spatial variability of the stiffness degradation and damping curves has a pronounced effect on the predicted site response. In contrast, when the weaker motion is considered the prediction is particularly sensitive to the statistical variation in the initial stiffness profile. This is mainly due to the stiffness degradation at very small strains shown by the laboratory data on LSST soils, which is captured in the paper by assuming an appropriate elastic domain in the constitutive model calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.