Abstract

The distribution of nitrogen dissimilative abilities among 618 isolates of fluorescent pseudomonads was studied. These strains were isolated from two uncultivated soils (C and D; collected at Châteaurenard and Dijon, France, respectively) and from rhizosphere, rhizoplane and root tissue of two plant species (flax and tomato) cultivated on these two soils. According to their ability to dissimilate nitrogen, the isolates have been distributed into three metabolic types: non-dissimilators, NO2- accumulators and denitrifiers. While the three metabolic types were recovered in all the compartments of soil D experiments, only two (non-dissimilators and denitrifiers) were recovered in all the compartments of soil C experiments. Even under the contrasting conditions of the two soil types, both plants were able to select the nitrate dissimilating community among the total community of fluorescent Pseudomonas, but the mode of this selection seems to be dependent on both plant and soil type. The soil type appears to be unable to significantly modulate the strong selective effect of tomato. Indeed, similar dissimilator to non-dissimilator ratios were found in the root tissue of this plant species cultivated in both soils. In contrast, the different dissimilator to non-dissimilator ratios observed in flax roots between soils C and D suggest that the selective effect of flax was modulated by the soil type. Taxonomic identifications showed that the 618 isolates were distributed among three species (P. chlororaphis, P. fluorescens, P. putida) plus an intermediate type between P. fluorescens and P. putida. However, no clear relationship between the distribution of the metabolic types (functional diversity) and the distribution of bacterial species has been found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call