Abstract
Recently, the nuclear industry has made a tremendous effort to assess the safety of nuclear power plants (NPP), as advances in seismology have led to the perception that the potential earthquake hazard in the U.S. may be higher than originally assumed. Due to the conservatism in the NPP design, structures and safety-related items are capable of withstanding earthquakes larger than the safe shutdown earthquake (SSE). One major aspect of conservatism in the design is ignoring the effect of soil-structure interaction (SSI), which results in conservative estimates of seismic demands for plant equipment. In this paper, a typical reactor building (RB) is chosen for a case study to investigate the potential benefit of accounting for SSI effects. A lumped mass stick model is first developed and analyzed with a fixed base configuration, using the free-field ground motion as input at the foundation level, as well as with a SSI configuration. Fragility analyses are then performed for the RB and one of its components to quantify the effects of the SSI on the overall seismic risk. In each case, a family of seismic fragility curves is developed. It is found that consideration of SSI effects in the analysis can improve the component fragilities, and potentially enhance the core damage frequency (CDF) of the plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Engineering and Radiation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.