Abstract

Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.