Abstract

Focusing on low-rise steel buildings supported by shallow isolated foundations on dense silty sand, this study demonstrates the effect of uncertainty in soil parameters on seismic response of structures. Considering a set of 20 ground motions representing 10% in 50 years hazard level and concentrating on peak base moment, base shear and interstory drift as the demand variables of interest, it is found that uncertainty in soil parameters may result in significant response variability of the structures, especially when vertical factor of safety is low and the structure is relatively stiff. Uncertainty in friction angle results in significant variability of the peak base moment and base shear, while peak interstory drift ratio is found to be virtually unaffected by uncertainty in soil parameters. It is also found that a linear soil–structure-interaction (SSI) model will not be able to predict such response variability under these set of ground motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.