Abstract

The mercury residue in soil not only poisons plants, but also bioaccumulates and biomagnifies through the food chain, causing a significant risk to human health. As an essential condiment on the table, the food safety of ginger should be focused on. Using soil culture experiments, this study aimed to identify the response of ginger growth to mercury pollution, assess the transmission and residue of mercury in different product organs and explore the mitigation mechanism of silicon on mercury toxicity. Effects of soil mercury pollution on ginger growth showed hormesis and time effect. Long-term mercury pollution led to growth inhibition and quality degradation of ginger, eventually reducing its yield by 25.96% (mercury=9mgkg-1). Contents of mercury and silicon in different organs both were the highest in root, followed by rhizome, less in stem and leaf, especially the mercury residue in rhizome manifested as Mother-ginger>Son-ginger>Grandson-ginger. At 6mgkg-1 soil mercury level, the mercury residue of Mother-ginger exceeds the edible pollutant limit standard (China) by 10.7 times, which makes no obvious risk after being consumed by adults, but poses a potential health threat to children. Notably, it is safer to consume the newly sprouted and inflated tender ginger. Application of silicon fertilizer could alleviate mercury toxicity, mainly by promoting ginger root growth and leaf pigment synthesis, stimulating water-gas exchange system, fluorescence system and antioxidant system to make an anti-stress response. 2mgkg-1 silicon fertilizer had the most significant mitigation effect on mercury stress, which increased the yield of ginger by 24.85% and reduced the mercury residue of ginger block by 44.44%-60.17%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.