Abstract

Summary Knowledge of spatial mean soil moisture and its variability over time is needed in many environmental applications. We analyzed dependencies of soil moisture variability on average soil moisture contents in soils with and without root water uptake using ensembles of non-stationary water flow simulations by varying soil hydraulic properties under different climatic conditions. We focused on the dry end of the soil moisture range and found that the magnitude of soil moisture variability was controlled by the interplay of soil hydraulic properties and climate. The average moisture at which the maximum variability occurred depended on soil hydraulic properties and vegetation. A positive linear relationship was observed between mean soil moisture and its standard deviation and was controlled by the parameter defining the shape of soil water retention curves and the spatial variability of saturated hydraulic conductivity. The influence of other controls, such as variable weather patterns, topography or lateral flow processes needs to be studied further to see if such relationship persists and could be used for the inference of soil hydraulic properties from the spatiotemporal variation in soil moisture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call