Abstract

In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Such uplift response of the buoyant structure is influenced by the soil it is buried in. In the case of a liquefiable soil deposit, the soil can lose its shear strength significantly in the event of an earthquake. If the soil liquefies fully, the buoyant structure can float towards the soil surface. However, a partly liquefied soil deposit retains some of its initial shear strength and resists the uplift. This paper discusses the different soil conditions and their influence on the uplift response of buoyant structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call