Abstract

The structure of the active-site C-cluster in CO dehydrogenase from Carboxydothermus hydrogenoformans includes a mu(2)-sulfide ion bridged to the Ni and unique Fe, whereas the same cluster in enzymes from Rhodospirillum rubrum (CODH(Rr)) and Moorella thermoacetica (CODH(Mt)) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH(Rr) and generated a lag prior to steady-state. CODH(Mt) was inhibited similarly but without a lag. Adding sulfide to CODH(Mt) in the C(red1) state caused the g(av) = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g(av) = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g(av) = 1.86 signal from the C(red2) state. A model was developed in which sulfide binds reversibly to C(red1), inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C(red2) to develop, and activity to recover. Using this model, apparent K(I) values are 40 +/- 10 nM for CODH(Rr) and 60 +/- 30 microM for CODH(Mt). Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency toward attacking Ni-bound carbonyl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.