Abstract
Nanocomposite superabsorbents were synthesized by simultaneously solution copolymerization of acrylamide (AAm) and sodium acrylate (Na-AA) in the presence of carrageenan biopolymer and sodium montmorillonite (Na-MMt) nanoclay. Potassium persulfate (KPS) and methylenebisacrylamide (MBA) were used as initiator and crosslinker, respectively. The structure and morphology of the nanocomposites were investigated using XRD, FTIR, scanning electron microscopy (SEM), and TEM techniques. The influence of nanoclay and carrageenan contents as well as monomer weight ratios on the degree of swelling of nanocomposites was studied. The optimum water absorbency was obtained at 10 wt% of clay, 10 wt% of carrageenan, and 1:1 of monomers weight ratio. The obtained nanocomposites were examined to remove of crystal violet (CV) cationic dye from water. The effect of carrageenan and clay content on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content up to 14 wt% of clay, it was decreased as the carrageenan increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominated for the adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results corroborated that the experimental data fit the Freundlich isotherm the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.