Abstract

The effects of precipitant and solid basicity on the Fischer-Tropsch Synthesis (FTS) activity of the sodium doped zinc ferrite catalysts were investigated. Olefin selectivity and stability of the catalysts were interrelated with the solid basicity which varied with the type of the precipitant, the amount of alkali promoter and its incorporation way into the catalyst matrix. The type of the precipitant and ionic medium of hydrolysis were seen to affect the textural properties of zinc ferrites. A cubic spinel phase of ZnFe2O4 were observed for all catalysts. Sodium promoter significantly modified the reduction behavior of the samples as well. Since the ionic strength was believed to have an effect on the solubility constants of Fe(OH)3 and Zn(OH)2, the purity of ZnFe2O4 nanoparticles would be expected to change as to be noticed from their different TPR profiles. All zinc ferrite samples had a much smaller crystal size than the precipitated iron, showing the structural promoter effect of zinc. In the study, the basicity of the catalysts was also correlated with FTS activity. All alkali promoted zinc ferrite catalysts have shown high olefin selectivity of about 50%. Although a basicity of certain extent is a must to attain high olefin selectivity, coking seems inevitable at high basicity. Therefore, an optimum interaction strength of the surface for CO dissociation appeared to exist and it might be tuned by surface basicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.