Abstract

MXenes suffer from severe oxidation and progressive degradation in aqueous media due to its poor chemical stability. Herein, sodium dodecyl sulfate (SDS) is employed as an efficient protectant for long-term storage of Ti3 C2 Tx -MXene aqueous dispersion. Experimental data support SDS's capability to protect oxidation-prone sites on Ti3 C2 Tx nanosheets, providing extended colloidal stability of up to 213 days. Concentration-dependent anti-oxidation effect articulates that 1.5mgmL-1 is deemed as an ideal SDS dose for Ti3 C2 Tx to achieve optimal oxidation-resistance in aqueous solution. Additionally, a chroma strategy is developed to instantly and precisely measure the oxidation degree of Ti3 C2 Tx . Adsorption-driven anti-oxidation efficacy of SDS is further confirmed by optimized conformations with interaction energies of SDS on termination-free and surface-defective Ti3 C2 Tx through multiscale simulations. This proposed route is a step forward in broadening the horizons of experimental and theoretical investigations of MXenes with promising implications for long-term storage and reliable applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call