Abstract
Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.