Abstract

A greenhouse experiment with two levels of Cd (0.5 and 10 mg Cd kg−1, in the form of CdCl2), and five salinity levels of irrigation water (0, 8.6, 17.1, 34.2 and 68.4 mM NaCl) in triplicate was conducted to determine the effect of NaCl-induced salinity on the solubility and availability of Cd in clay loam and sandy calcareous soils. Corn seeds (Zea mays L.) were sown in pots. Forty-five days after planting, the shoots were harvested, and their Cd concentration was determined. The post-harvest electrical conductivity (ECe), pH, and concentrations of cations and anions were determined in soil saturation paste extracts. Increasing irrigation water salinity resulted in significant increases in the total soluble Cd concentration in both studied soils. A positive correlation was found between the total soluble Cd and the chloride concentration in the soil solution.Solution speciation, calculated with MINEQL+ (a chemical equilibrium modeling system), predicted that Cd was present mainly as free Cd2+ ions followed by CdCl+ and $$ {\text{CdSO}}^{0}_{4} $$ in the soils irrigated with deionized water. However, Cd species in the soil solution were significantly altered by increasing chloride concentration, with Cd–chloro complexes becoming the dominant Cd species in the soil solution. Increasing the salinity level resulted in significant decreases in the shoot dry matter and increases in the shoot Cd concentration. Shoot Cd concentration was positively correlated with both the total Cd and Cd–chloro complexes in the soil solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call