Abstract

The effects of NaCl and osmotic dehydration on the linear viscoelastic behavior of duck egg yolk were evaluated. An increase in NaCl concentrations from 0% to 3.0% (w/w) resulted in a remarkable change in the linear viscoelastic behavior by inducing a sol–gel transition, specifically. The transition was more pronounced when 1.5% (w/w) NaCl was incorporated. The effect of dehydration on aggregation and network formation was predominant than that of the NaCl addition. Nevertheless, at a lower degree of dehydration, the addition of NaCl could modulate the viscoelastic behavior of duck egg yolk, resulting in a well-developed gel network. Addition of NaCl into duck egg yolk could stabilize the protein molecules as evidenced by an increase in denaturation temperature as well as a delay in gel network formation. As visualized by a scanning electron microscope, the denser network with smaller voids was observed in duck egg yolk gel with increasing NaCl concentration and degree of dehydration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call