Abstract

Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to Escherichia coli lipopolysaccharide (LPS) in weanling pigs. In a 28-d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, or 0.4% sodium butyrate, or 110 mg/kg of dietary tylosin. There was no effect of dietary sodium butyrate or tylosin on overall G:F, but there was a linear trend (P < 0.07) toward decreased ADFI and ADG as levels of sodium butyrate increased. In a second 28-d experiment, 108 pigs (initial BW 6.3 kg) were assigned to 1 of 3 dietary treatments: 1) no antibiotics, 2) 0.2% sodium butyrate, or 3) 55 mg/kg of carbadox. On d 14, a subset of pigs from the no-antibiotic and butyrate treatment groups was challenged with E. coli LPS or injected with sterile saline in a 2 x 2 factorial arrangement (+/-LPS challenge; +/-dietary butyrate; n = 6 pigs/treatment group). Four hours after LPS challenge, blood samples were obtained, and samples of LM, liver, and ileum were collected for gene expression analysis. Serum samples were analyzed for IL-6, tumor necrosis factor alpha (TNFalpha), alpha(1)-acid glycoprotein, cortisol, IGF-I, insulin, and metabolites. The relative abundance of tissue cytokine and IGF-I mRNA was measured by real-time PCR. Feeding diets containing sodium butyrate or carbadox did not alter ADG or ADFI compared with pigs fed the control diet. From d 0 to 14, pigs fed diets containing 0.2% sodium butyrate had decreased (P < 0.05) ADG and tended (P < 0.06) to have decreased G:F compared with animals fed diets containing carbadox. Challenge with LPS increased (P < 0.05) serum cytokines and cortisol and decreased (P < 0.05) serum glucose and triglycerides. Injection with LPS increased (P < 0.05) the relative abundance of hepatic IL-6 and TNFalpha mRNA, increased (P < 0.05) LM TNFalpha mRNA content, and decreased (P < 0.05) IGF-I mRNA in LM. For serum cortisol, there was an interaction (P < 0.05) between dietary butyrate and LPS. The increase in serum cortisol attributable to LPS was greater (P < 0.05) in pigs fed butyrate than in pigs fed the control diet. There tended (P < 0.10) to be an interaction between LPS and diet and for butyrate to increase the relative abundance of IL-6 mRNA in LM. Carbadox did not alter cytokine or IGF-I mRNA or serum metabolites, but did decrease (P < 0.05) serum TNFalpha. These data indicate that dietary sodium butyrate does not enhance growth performance, but may regulate the response to inflammatory stimuli in weanling pigs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.