Abstract

BackgroundPast studies have found that sodium bicarbonate ingestion prior to exercise has a performance-enhancing effect on high-intensity exercise. The aim of this study was to investigate the effects of continuous sodium bicarbonate (NaHCO3) supplementation on anaerobic performance during six weeks of high-intensity interval training (HIIT).MethodsTwenty healthy college-age male participants were randomly assigned to either the HCO3− group (SB) or the placebo group (PL), with 10 subjects in each group. Both groups completed 6 weeks (3 days/week) of HIIT with the SB ingesting an orange-flavored solution containing 15 g xylitol and 0.2 g HCO3−/kg body mass during each training day, and PL ingesting a similar beverage that was HCO3−-free. This study separated 6 weeks of training into two stages with different training intensities, with the first 3 weeks at a lower intensity than the second 3 weeks. Blood samples to measure serum HCO3− were obtained 5 min before and 30 min after the following HIIT training sessions: Week 1, training session 1; week 3, training session 3; week 6, training session 3. Three 30s Wingate tests (WAnT) were conducted before, in the middle, and after the training and the supplementation interventions, with peak power, mean power, and fatigue index obtained during WAnT, and blood lactate and heart rate obtained after WAnT.ResultsOur findings indicate the following: 1) Serum HCO3− level of SB was significantly higher than PL (p < 0.05) both before and after each HIIT; 2) Relative peak power in WAnT was significantly higher in the SB group after 6 weeks (p < 0.01); 3) Lactate clearance rate and the lactate clearance velocity after 10 min of WAnT were both significantly higher in SB in the post-test (p < 0.01); 4) Heart rate recovery rate at 10 min after WAnT in both SB and PL after 6 weeks were significantly improved (p < 0.01 and p < 0.05, respectively), resulting in no difference between groups on these measures.ConclusionsThese data suggest that supplementation of HCO3− at the level of 0.2 g/kg body mass before HIIT training enhances the effect of HIIT on anaerobic performance, and improves the blood lactate clearance rate and the blood lactate clearance velocity following anaerobic exercise.

Highlights

  • High-intensity interval training (HIIT) refers to a training protocol involving multiple bouts of high-intensity exercise or all-out sprints that are interspersed with recovery periods [1]

  • Because of the high intensity and short duration, HIIT is characterized by an energy supply derived primarily from anaerobic metabolism, it is known that all three energy systems support the exercise in different proportions during different exercise time periods [17,18,19]

  • That the improvement in anaerobic capacity during HIIT training is likely from the combined results of enhanced phosphocreatine energy supply capacity [21], improved glycolytic enzyme activity [22, 23], and enhanced aerobic metabolism [20]

Read more

Summary

Introduction

High-intensity interval training (HIIT) refers to a training protocol involving multiple bouts of high-intensity exercise or all-out sprints that are interspersed with recovery periods [1]. The study of Tomlin et al (2001) showed a positive relationship between aerobic fitness and power recovery from high intensity intermittent exercise [20] It appears, that the improvement in anaerobic capacity during HIIT training is likely from the combined results of enhanced phosphocreatine energy supply capacity [21], improved glycolytic enzyme activity [22, 23], and enhanced aerobic metabolism [20]. Results: Our findings indicate the following: 1) Serum HCO3− level of SB was significantly higher than PL (p < 0.05) both before and after each HIIT; 2) Relative peak power in WAnT was significantly higher in the SB group after 6 weeks (p < 0.01); 3) Lactate clearance rate and the lactate clearance velocity after 10 min of WAnT were both significantly higher in SB in the post-test (p < 0.01); 4) Heart rate recovery rate at 10 min after WAnT in both SB and PL after 6 weeks were significantly improved (p < 0.01 and p < 0.05, respectively), resulting in no difference between groups on these measures. Conclusions: These data suggest that supplementation of HCO3− at the level of 0.2 g/kg body mass before HIIT training enhances the effect of HIIT on anaerobic performance, and improves the blood lactate clearance rate and the blood lactate clearance velocity following anaerobic exercise

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call