Abstract

Significant efforts are being made to develop several novel solvents or materials for postcombustion CO2 capture technology. Traditional amine solvents suffer from mass loses due to its volatility and poisoning by flue gas impurities. Ionic liquids (ILs) are considered to be promising alternatives for CO2 capture due to their unique features, such as negligible vapor pressure. Despite the extensive research on CO2 capture by ILs, few studies have investigated the effect of flue gas components on CO2 absorption performance. Because of the large differences between CO2 and SO2 in the absorption capacity and partial pressure in flue gas, it is essential to study the role of SO2 in CO2 capture using ILs. This work focused on studying the effect of SO2 with low concentration on postcombustion CO2 capture by 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] and explaining the microscopic mechanism through quantum chemical calculation. Results showed that the CO2 absorption capacity was largely decreased by 25% i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.