Abstract

The effect of Sn on corrosion behavior of ferritic stainless steels in 20 mass% H2SO4 was investigated by alternating current and direct current electrochemical methods and gravimetric tests at 25 °C. The results show that Sn can effectively improve general corrosion resistance of ferritic stainless steels in H2SO4, mainly due to highly raised hydrogen evolution overpotential which is in favour of strong suppression of hydrogen evolution reaction, and inhibitive effect of dissolved Sn2+ on elementary anodic reactions. With increasing Sn content, the better corrosion resistance can be reached. The Electrochemical Impedance Spectroscopy (EIS) includes four time constants and can be perfectly fitted by equivalent circuit: Rs(CdlRct)(QadsRadS(RL1 (L1 (RL2L2)))).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.