Abstract

Because of its tetragonal structure, β-Sn exhibits anisotropy in electromigration behavior. The diffusivity of Cu atoms along the c-axis of Sn is much faster than that along the a-axis; therefore, the orientation of the c-axis exerts a strong influence on Cu atomic motion. In this work, the effect of Sn grain c-axis on Cu atomic motion was investigated by using Cu reinforced Sn3.5Ag composite solder joints. The microstructure and morphology of the solder joints were characterized by scanning electron microscopy (SEM) equipped with a backscattered electron (BSE) detector. It was found that intermetallic compounds (IMCs) in the solder matrix were formed due to the migration of Cu atoms to the surface of the solder joint under current stressing. There was a large amount of IMCs on the solder matrix which protruded from the solder matrix. By changing the direction of electron flow, i.e. changing the anode and the cathode side, the IMCs which formed after current stressing in the solder matrix disappeared and the protruding Sn remained unchanged. The results revealed that the growth of IMCs was closely related to the migration of Cu atoms, while Cu atomic motion depended on the orientation of the Sn grain c-axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.