Abstract

Monitoring the decay rate of airflow in spirometry may be clinically useful. The decay rate is expected to represent a combination of lung elastance and airway resistance. However, the decay rate calculated using the single compartment lung model is not expected to account for slower lung mechanics, such as small airways resistance and tissue viscoelasticity. This study assesses whether the decay rate is affected by these lung mechanics. An exponentially decaying flow was created using a shutter to occlude airflow during passive expiration for 15 healthy subjects. To approximate small airways resistance and viscoelasticity, the gradient of pressure increase (relaxation gradient) during shutter closure was measured. The occlusion resistance, elastance, and decay rate were also calculated for these breaths. None of these mechanics were found to be correlated with the relaxation gradient. The relaxation gradient was also found to be independent of driving pressure. Conversely, the relaxation gradient was found to depend on lung volume. The results of this study suggest using lung mechanics and decay rate to monitor changes in lung condition over time may miss information about changes in the small airways and viscoelastic lung tissue. Thus, it is useful for monitoring large airways disease, but may be ineffective for small airways disease such as ARDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.