Abstract

In this study, Sm was adopted in order to completely replace the expensive Pr/Nd elements in the A2B7 type alloy. The results indicate that Sm is a favourable element for forming Ce2Ni7 type and Ce5Co19 type phases. With the increasing amount of Sm, the discharge capacity of the alloy retains a value of 283·3 mAh g−1 at the current density of 1200 mA g−1. The maximum discharge capacity of the alloys increases with the increasing Sm content when Mg content is relatively low. By optimising the composition and processing technology, the cycle life the alloy enhances from 74 cycles to more than 540 cycles, and the maximum discharge capacity also increases from 300 to 355 mAh g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.