Abstract
Diffusion aluminum coating is crucial to protect aero-engine turbine blades from high-temperature oxidation. Slurry aluminizing, as a commonly-used coating preparation technology, has variations in the process parameters that directly affect the quality of the coating. Therefore, this paper investigates the effect of slurry thickness on coating quality. Different forms of aluminized coatings were obtained by coating nine DZ22B nickel-based superalloy plates of the same size with different slurry thicknesses while keeping other parameters constant. These aluminized coatings were characterized using a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD), and a surface gauge. The results show that the AlNi phase dominates the matrix of the aluminized coating, and the outer layer of the coating has white dotted precipitates of Cr. As the slurry thickness increases, the coating thickness increases, and the proportion of the outer layer in the overall coating increases. In contrast, the thickness of the interdiffusion layer does not change significantly. The thicker the slurry, the higher the Al content of the coating surface. A medium-thickness slurry can form a smooth aluminizing coating with a roughness Ra < 4.5 μm surface. The combined results show that a medium-thick slurry can produce a high-quality coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.