Abstract

Efforts have been made to study and analyze the effect of slip velocity on the performance of a magnetic fluid based transversely rough porous narrow journal bearing. The Neuringer-Rosensweig model governs the fluid flow while the velocity slip is modeled by the method of Beavers and Joseph. The stochastic model of Christensen and Tonder has been adopted to evaluate the effect of transverse surface roughness. With the adding of suitable boundary conditions, the associated stochastically averaged Reynolds’ equation is solved to obtain the fluid pressure, in turn, which results in the calculation of load carrying capacity. It is found that the combined effect of slip velocity and surface roughness is to decrease the load carrying capacity significantly, in general. Of course, in augmenting the performance of the bearing system, the eccentricity ratio plays a central role even if the slip parameter is at minimum. It is established that the bearing can support a load even in the absence of flow, unlike the case of a conventional lubricant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call