Abstract

Sleep duration is known to affect physiological and circadian metabolites and human homeostasis. However, little is known about the relationship between sleep quality and metabolite and cognitive function during exercise. Therefore, the aim of the present study was to investigate the impact of sleep quality on metabolite level and cognitive function in female volleyball athletes. Twelve female volleyball athletes participated in this study. Sleep efficiency was measured for 1 week using NemuriSCAN (Paramount Bed Co. Ltd., Japan) as an index of sleep quality. The subjects were divided into better (n = 6) and lesser (n = 6) sleep quality groups by the median value of sleep efficiency. Saliva samples were collected using a Salimetric oral swab cotton and salivary metabolites were analysed using capillary electrophoresis and time-of-flight mass spectrometry. The subjects performed Stroop tasks (simple and difficult tasks) at rest and during aerobic exercise in recumbent cycle ergometer at light and heavy intensity. Increased sleep efficiency was found in the better sleep quality group, whereas total sleep time was similar. There were differences in urea cycle and Krebs cycle metabolites between the two groups; their levels were correlated with sleep efficiency. The difficult-task response time during heavy exercise was faster in the better sleep quality group. We demonstrated that sleep efficiency was associated with urea cycle and Krebs cycle metabolite levels and response time during heavy exercise in volleyball athletes. These results suggested that sleep quality may affect amino acid and energy metabolism and cognitive function during heavy exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.